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SUMMARY

The next generation of space propulsion systems will be designed to incor-
porate advanced health monitoring and nondestructive inspection capabilities.
As a guide to help the nondestructive evaluation (NDE) community impact the
development of these space propulsion systems, several questions should be
addressed. This report provides an overview of background and current informa-
tion on space propulsion systems at both the programmatic and technical levels.
It provides a framework that will assist the NDE community in addressing key
questions raised during the 2-5 April 1990 meeting of the Joint Army-Navy-
NASA-Air Force (JANNAF) Nondestructive Evaluation Subcommittee (NDES).

INTRODUCTION

The next generation of space propulsion systems will be designed to incor-
porate advanced health monitoring and nondestructive inspection capabilities.
As a guide to help the nondestructive evaluation (NDE) community affect the
development of these space propulsion systems, several questions should be
addressed. The following key questions were raised during the 2-5 April 1990
meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Nondestructive Evalua-
tion Subcommittee (NDES):

(1) What types of space propulsion systems are being considered?

(2) What are the principles of operation of these systems?

(3) Who is developing and/or researching space propulsion systems?

(4) How are inspections and reliability assessments performed on the
ground and in orbit?

(5) Do the space propulsion systems require health monitoring?

(6) What are the possible failure modes for these systems?

(7) Have the reliabilities of these space propulsion systems been
determined?

This report describes technological driver missions supporting space pro-
grams that are developing chemical, electric and nuclear propulsion systems.
The types of propulsion systems being considered, their principles of operation
and known failure modes, and the developers are identified. The propulsion
systems characteristics are described in sufficient detail to identify life-
limiting features and opportunities for nondestructive testing and health moni-
toring. However, the reader should be aware that not all aspects of the



propulsion system that required health monitoring and nondestructive evaluation
are covered. For example, the failure modes of space-based nuclear generators
or solar panels that supply power in the form of electric energy for electric
propulsion systems are not discussed. Space propulsion systems are at various
stages of development; therefore, some questions, such as those concerned with
reliability and failure modes, remain unanswered. The key references provided
will assist researchers in developing their particular area of interest in
space propulsion NDE and health monitoring.

TRANSPORTATION FOR FUTURE SPACE SCIENCE MISSIONS

The actual vehicles and propulsion systems that are to be used for future
space missions have, in most cases, not been determined. The specific propul-
sion system and vehicle being considered for a particular mission changes as
the mission develops and matures. Therefore, these propulsion systems are not
predetermined and fixed but are essentially moving targets. Before the NDE
community can assist and affect the development of these advanced propulsion
systems, they must latch onto these moving targets by understanding the pro-
grammatic thrusts, the path of the development, and current status of these
systems. Technological challenges have been identified (ref. 1) that are driv-
ing the development of advanced space propulsion systems. The following set
of missions presents technological challenges that must be addressed to meet
national space transportation needs:

(1) Modern expendable launch systems of small and medium capacity

Payload weight: 20 000 to 50 000 lb low earth orbit (LEO)
High reliability
Low cost
Improved payload-to-lift mass

(2) Unmanned heavy-lift launch capability to LEO

• Payload weight: greater than 100 000 lb
• Payload envelop: as unrestricted as feasible
Cost: substantial reduction over current systems (full or partial

reusability will be determined by economic tradeoffs)

(3) Reusable orbital transfer system to raise payloads from LEO to higher
altitude, sun-synchronous or geostationary orbit and to return them

Geostationary payload weight: greater than 20 000 lb
Payload envelope: as unrestricted as feasible
Robotics: capable of interfacing with intelligent front-end for

routine servicing operations

(4) Advanced space transportation system to replace the space shuttle
after the turn of the century

LEO payload weight: from 20 000 lb to potentially greater than
100 000 lb

Payload envelope: as unrestricted as feasible
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Automation and robotics: used to reduce turnaround time and
mission costs, with special emphasis on self diagnostics

Tradeoffs will be made between "Shuttle II" and the transatmospheric
Aerospace Plane

(5) High-energy interplanetary transfer system to meet objectives of the
National Commission on Space

• High specific impulse, high-thrust, long-life propulsion systems to
minimize duration of trips to Mars (e.g., 10 000 lb (44 000 N) or
greater thrust, 800-sec specific impulse)

High specific impulse, long-life propulsion systems for planetary
scientific missions (e.g., very low thrust, greater than 1000-sec
specific impulse)

• Nuclear-electric or direct thrust engines are candidates for these
missions

Hybrid power and propulsion systems are another attractive option

Some of the specific technology-driver missions for space science for the
mid-1990's follow:

The Earth Observing System (EOS) (fig. 1), with three EOS platforms in
sun-synchronous orbits, is designed to study the Earth's atmosphere. It is
believed that automated or robotic servicing will be required at the opera-
tional altitude of the platform during its 20-yr life.

The Large Deployable Array (LDR) (fig. 2) is an astronomical observatory
design that will operate in the 30-to 1000-um range.

It is expected that maintenance will occur on a 3-yr schedule.

During a Mars Sample Return Mission (MSR) (fig. 3), samples at several
depths and at widely dispersed sites on the Martian surface will be obtained
and returned to Earth in a pristine condition.

SPACE EXPLORATION INITIATIVE

On February 16, 1990, President Bush approved policy for the Space Explo-
ration Initiative. The goal of this initiative (ref. 2) is to place Americans
on Mars by the year 2019. The initiative includes both lunar and Mars program
elements, as well as robotic science missions. The near-term focus will be on
technology development. This will be done by searching for new and innovative
approaches and technology, and by investing in high-leverage, innovative tech-
nologies with potential to make major impact on cost, schedule, and perform-
ance. Mission, concept, and analysis studies will be done in parallel with the
technology development.

A baseline program architecture will be selected after several years of
defining two or more reference architectures while developing and demonstrating
broad technologies (refs. 3 and 4). NASA will be the principle implementing
agency, whereas the Department of Defense and Department of Energy will have
major roles in technology development and concept definition. Some of the
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space programs discussed below have been absorbed or replaced by this Space
Exploration Initiative.

SPACE PROGRAMS

The National Aeronautic and Space Administration (NASA) has several pro-
grams that require advanced, space-based propulsion systems. These propulsion
systems may be quite different from those used in Earth-to-orbit launch vehi-
cles. Each program has a different set of mission requirements that drives the
development of different space propulsion systems (refs. 5 to 7). For example,
the propulsion system used to keep the Space Station Freedom (fig. 4) in orbit
will be quite different from that used for a manned Mars mission. To answer
the questions presented earlier, we must examine the NASA space programs that
have advanced space propulsion needs. Each program identifies specific mission
requirements to be met by the propulsion system (ref. 8).

During the development of a space transportation system, propulsion stud-
ies and vehicle studies must be iterated until the propulsion requirements are
defined for the vehicle. Following the definition of the propulsion require-
ments, mission-focused propulsion system studies identify the specific required
propulsion system. Depending on the acceptable mission scenario, very differ-
ent propulsion systems and vehicles can result in successful space transfer.
However, since studies have not matured sufficiently, we are unable to specify
what propulsion system will be used for an actual mission. Mission scenario
studies indicate that advanced, reliable, long life, low weight, efficient,
high power, and variable-thrust space propulsion systems are needed.

Space propulsion systems may be based on electrical, chemical, or nuclear
processes (table I). The design, operation, maintainability, reliability,
failure modes, health monitoring, and mission requirements for these propulsion

TABLE I. - SPACE PROPULSION SYSTEMS

Engine type Principle of Propulsion system
operation

Chemical Recomposition Liquid oxygen/
liquid hydrogen
(LOX/H2 )	 thruster

Decomposition Hydrazine thruster

Electrical Electrostatic Ion thruster

Electrothermal Resistojet,	 arcjet,
microwave thruster

Electromagnetic Magnetoplasmadynamic

Nuclear Nuclear fission Solid core rocket
Gas core rocket
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systems will vary considerably. Therefore, it is natural to examine each of
these systems on the basis of the physical process used to produce thrust.
Before the types of propulsion systems being considered, developed, or used are
described, it is appropriate to identify the programs that support the develop-
ment of these propulsion systems.

Chemical Propulsion Program

Project Pathfinder (ref. 9) from the NASA Office of Aeronautics and Space
Technology l (OAST) is a research and technology program designed to make new
missions in space exploration possible and strengthen the technology base in
support of the civil space program. Pathfinder has a distant horizon that is
reached by building on the space shuttle and space station programs. Path-
finder addresses technologies that support a range of space missions including:
a return to the Moon to build an outpost (fig. 5), piloted missions to Mars
(fig. 6), and continuing exploration of Earth and the other planets.

Project Pathfinder has four major components: (1) Exploration Technology,
(2) Space Operations, (3) Humans-in-Space, and (4) Transfer Vehicle Technology.
The Exploration Technology, Space Operations, and Humans-in-Space components
include planetary rover development, surface power, remote sample acquisition,
optical communications, autonomous rendezvous and docking, resource processing,
in-space assembly and construction, cryogenic fluid depots, space nuclear
power, extravehicular suits, human performance, and closed-loop support sys-
tems. The Transfer Vehicle Technology is of particular interest to JANNAF NDES
because it supports transportation to and from geostationary Earth orbit, the
Moon, Mars, and other planets. Specific goals of the Transfer Vehicle compo-
nent include significant reduction in the mass that missions require for launch
into low Earth orbit and in transit, as well as reductions in the time required
for transit. The key elements of the Transfer Vehicle Technology thrust are
the chemical transfer propulsion research, cargo vehicle propulsion develop-
ment, high-energy aerobraking development (fig. 7), autonomous lander develop-
ment, and fault-tolerant systems.

The Transfer Vehicle Technology thrust led to the initiation of the NASA
OAST Pathfinder Chemical Transfer Propulsion Program (refs. 10 and 11). This
program was initiated to provide the technology to design and develop highly
reliable, reusable cryogenic transfer vehicle engines that are fault tolerant,
and have long lives. They will be high-performance, liquid oxygen/liquid
hydrogen (LOX/H2 ) expander cycle engines for space-based transfer vehicles and
Moon and Mars landers.

Electric Propulsion Program

NASA OAST's Propulsion, Power, and Energy Division supports an electric
propulsion program (refs. 12 to 15) for a broad class of missions. Three types
of electric propulsion systems are being developed (refs. 12 to 29): electro-
static (ion), electrothermal (resistojet, arcjet, microwave, and radiowave),
and electromagnetic (magnetoplasmadynamic, or MPD). Resistojets are currently
used on geosynchronous communications satellites.

l Now NASA Office of Aeronautics and Exploration Technology (OAET).
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Nuclear Propulsion Program

In 1987 the Air Force Systems Command reinitiated a Direct Nuclear Propul-
sion Program (refs. 1, 30, and 31). The goals of this program are to develop a
high-impulse, high-thrust, low-weight propulsion system. This propulsion sys-
tem would be used for orbital transfer vehicles, fast launch interceptors,
intercontinental ballistic missiles, and other missions.

PROPULSION SYSTEM CHARACTERISTICS

The operating characteristics of chemical, electrical and nuclear propul-
sion systems are quite different (ref. 32). Thrust and specific impulse can be
used for making general comparisons between propulsion systems. Table II indi-
cates the range of thrust T and specific impulse Isp for electrical, chemi-
cal, and nuclear propulsion systems. Thrust is the amount of force that a
propulsion system generates. The greater the thrust, the greater the accelera-
tion of the vehicle. Specific impulse (in seconds) is the thrust (in Newtons)
that can be obtained from an equivalent rocket which has a propellant weight
flow rate (in Newtons per second) of unity. (Specific impulse is somewhat
analogous to the number of miles per gallon of fuel for automobiles.) Electric
propulsion systems have lower thrust capabilities than chemical or nuclear pro-
pulsion systems do. Chemical propulsion systems yield the highest thrust lev-
els available to date. However, direct nuclear propulsion is expected to yield
greater thrust levels than chemical propulsion. The specific impulse for elec-
trical resistojets and arcjets are comparable to chemical LOX/H 2 and hydrazine
propulsion systems. The ion, MPD, and nuclear propulsion systems have the

TABLE II. - THRUST AND SPECIFIC IMPUSLE

Engine type Propulsion system Specific	 impulse, Thrust,
Isp,T,

seconds Newtons

Chemical LOX/H2 thruster 300 to 500 (0.110 to 2222)x103

Hydrazine thruster 280 to 300 (180 to 360)x10-3

Electrical Ion thruster 3500 (65 to 510)x10-3

Resistojet 290 to 380 (180 to 490)x10-3

Arcjet 400 to 1100 (10 to 212)x10-3

Microwave thruster 200 to 600

Magnetoplasma- 1500 to 8000 50 to 200
dynamic (MPD)

Nuclear Nuclear	 thermal 800 to 1200 (333 to 1000)x103
rocket	 (NTR)



highest specific impulses, and they can exceed those of other systems by an
order of magnitude.

Classes of propulsion systems that will be needed to meet mission
requirements can be identified from table II and from preliminary mission pro-
pulsion requirements. High specific impulse engines, such as ion, MPD, and
nuclear propulsion systems, will be needed for interplanetary transfer. Low
thrust engines, such as resistojet, arcjet, and hydrazine engines, are needed
for station keeping and drag makeup for orbiting systems and for manned maneu-
vering units. High-thrust engines are needed for cargo orbit and orbital
maneuvering vehicles (fig. 8).

BASIC PRINCIPLES OF SPACE PROPULSION SYSTEMS

In this section, each of the candidate propulsion systems is discussed,
the operating principles and current developmental status of each system are
indicated, and any system features that limit the useful lifetime of these pro-
pulsion systems are highlighted. The specific researchers that are developing
these systems can be identified in the references quoted.

Chemical Propulsion

Hydrogen/oxygen thruster. - The hydrogen/oxygen (LOX/H 2 ) thruster uses
chemical recomposition to produce thrust. Hydrogen and oxygen are injected,
mixed and ignited in the combustion chamber (fig. 9, refs. 33 to 40). The
ignited mixture burns to form hot gaseous reaction products that are acceler-
ated via the throat and nozzle assembly to produce thrust. The RL10A-3-3A
engine, which is the only upper-stage, LOX/H2 thruster in operation, was
designed to be expendable. Life-limiting failure modes have not been observed
for reusable, space-based, gaseous 0/H thrusters (fig. 10), therefore, the
lifetimes are not known.

Hydrazine thruster. - The hydrazine thruster is based on the principle of
chemical decomposition (fig. 11). The propellant, hydrazine, is injected into
the catalyst bed (refs. 41 to 46), and the catalyst causes the hydrazine to
spontaneously decompose into NH 3 , N2 , and H2 gases. The gases are exhausted
via the nozzle to produce thrust. In an augmented hydrazine thruster
(fig. 12), the gases are heated further before exiting. The service life of
these thrusters is limited by the useful life of the catalyst bed. The failure
is due to a break down of the catalyst into fine particles that are eliminated
via the exhaust.

Electric Propulsion

Resistojet. - A schematic diagram of a resistojet is shown in figure 13.
Propellant is heated via a resistively heated heat exchanger. The heated pro-

.	 pellant (1400 °C) is expanded and exhausted via the nozzle to produce thrust
(refs. 47 to 66). The propellant may be introduced to create a vortex flow
pattern within the heat exchanger. The candidate propellants are CO 2 (carbon
dioxide), CH 4 (methane), H 2 (hydrogen), NH 3 (ammonia), N2 (nitrogen), steam,
and NA (hydrazine). State-of-the-art resistojets are shown in figures 14
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to 18. Heater mass, and material surface changes, and grain growth rates
affect the life of these systems. The thruster life also depends on the pro-
pellant used.

Arcjet. - The arcjet (fig. 19) uses an electric arc to heat the propellant
directly. Here the propellant is passed between two electrodes while an arc is
struck and maintained to heat and expand the propellant. Then the heated pro-
pellant (hydrazine, hydrogen, or ammonia) is exhausted through the nozzle to
produce thrust (refs. 67 to 89). Several designs using different materials
have been studied (figs. 20 to 23).

The lifetime of an arcjet is limited by electrode, nozzle, and injector
wear. The electrode wear may be in the form of spalling due to thermal shocks
or localized melting from high current densities. Electrode wear may also
occur when there are chemical incompatibilities. The arcjet reliability is
not known; however, the starting reliability indicates that a large number of
starts does not affect the steady state performance.

Microwave thrusters. - Microwave and radiowave thrusters heat the propel-
lant without the use of electrodes (refs. 90 to 96). The microwaves heat the
propellant (argon, nitrogen, or helium) in the discharge chamber (fig. 24), and
the heated propellant (2000 K) exits via the nozzle to produce thrust. Nozzle
melting and erosion have limited the thruster life.

ton thruster. - An ion thruster is shown in figure 25. Xenon or mercury
vapor is ionized in an ionization chamber, and the positively charged particles
are accelerated via the accelerator grid. Then, neutralizer injects electrons
to neutralize the accelerated, positively charged particles. This accelerated,
neutralized mass produces the thrust (refs. 97 to 124). The magnets, the
screen, and accelerator grids make up the ion optic system (figs. 26 and 27)
that collimates the accelerated particles. The typical path that the ions fol-
low is also shown in figure 25. Unexpected extinctions of the discharge are
due to thermal design and lack of ignition control. Sputter erosion of the
discharge chamber, screen, baffle, and cathode limits the life of ion thrus-
ters. Metallic flakes, which form as a result of this sputter erosion, may
spall and short out the ion optics by bridging the gap between the screen and
accelerator grids. The cathode tubes also oxidize and deform during thruster
operation.

Magnetoplasmadynamic (MPD) thruster. - The magnetoplasmadynamic thruster
(figs. 28 to 31) looks similar to the arcjet; however, the principles of opera-
tion are quite different. The MPD thruster is based on electromagnetic princi-
ple as opposed to the arcjet, which is based on electrothermal principle. The
propellant is ionized by the current flow between the anode and cathode. This
current flow induces a magnetic field that causes expansion of the arc and
acceleration of the ionized gas to produce thrust (refs. 125 to 136). The pro-
pellants used are xenon, argon, hydrogen, helium, ammonia, neon, nitrogen, and
lithium. The lifetimes of these propulsion systems are limited by erosion of
the cathode and insulator.
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Nuclear Propulsion

Two types of nuclear propulsion systems are being developed: a nuclear
thermal propulsion (NTP) system and a nuclear electric propulsion (NEP) system
(refs. 102 and 136). The NEP system uses a nuclear reactor to provided elec-
tric power to an electric propulsion system (e.g., an MPD or ion thruster).
The NTP systems may use either a solid core reactor (SCR) or a gas core reactor
(GCR).

Solid core nuclear thermal rocket. - A solid core nuclear propulsion sys-
tem (refs. 137 to 146) uses fissioning solid uranium carbide particles to heat
hydrogen (figs. 32 to 36). The hydrogen is heated as it flows down the coolant
tubes of the fuel elements. Then it is accelerated via the nozzle to produce
thrust. Both fuel and support elements are used in forming the SCR. The rate
of reaction in the SCR is controlled by the graphite matrix supporting the ura-
nium carbide particles that make up the fuel elements and by ZrH moderators
contained in the support elements. Corrosion of the graphite moderator/heat
exchanger by hot hydrogen limits the life of the SCR propulsion systems.

Gas core nuclear thermal rocket. - Gas core nuclear propulsion systems
(refs. 147 to 152) use fissioning uranium gas/plasma to heat hydrogen. Two
types of gas core (open- and closed-cycle) rockets are being considered. An
open
cycle, porous wall, spherical gas core rocket engine uses the nuclear thermal
energy of the fission gas/plasma to heat an envelope of hydrogen propellant
(fig. 37). The hydrogen expands and flows out of the nozzle to produce thrust.
Both uranium and hydrogen are exhausted in this open-cycle system. A closed-
cycle nuclear light bulb (NLB) rocket heats hydrogen that is behind thermally
transparent and cooled SiO or BeO walls (figs. 38 to 40). This arrangement
isolates the uranium fuel and fission products from the propellant exhaust.

DISCUSSION AND SUMMARY

There are many space propulsion systems that are being developed. The
principles of operation vary considerably between systems. Each system has its
own particular types of failure modes. However, it is clear that material
losses and material microstructural changes are the dominant mechanisms that
affect the lifetimes of these advanced systems. These material variations are
identified as mass losses due to electrical sputter erosion, oxidation or chem-
ical erosion, and microstructural changes such as melting and grain growth.
Therefore the NDE and health monitoring researchers may want to direct their
attention to nondestructive evaluation and monitoring of surface and bulk mate-
rial changes.

The difference between past propulsion systems and the next generation of
space propulsion systems will be the incorporation of health monitoring strate-
gies. Lifetime estimates have been obtained for some of these space propulsion
systems. However, nonintrusive methods for monitoring and verifying the pro-
pulsion system's "age" and health need to be developed. In addition, the
reliabilities for most of these propulsion systems remain in question, and
methods of determining these reliabilities at a reasonable cost have not been
developed.
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These space-based propulsion systems provide a rich field of opportunity
for nondestructive evaluation and health monitoring researchers. These
researchers must become intimately aware of the current status and future
directions of propulsion research. Nondestructive evaluation and health moni-
toring researchers will impact the development of space propulsion systems
when they actively participate in the development of future directions.
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FIGURE 5. - ARTIST'S CONCEPT OF LUNAR VASE.

FIGURE 6. - ARTIST'S CONCEPT OT MARS MISSION.
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FIGURE 8. - CURRENT SPACE ROBOT CONCEPT ORBITAL MANEUVERING VEHICLE WITH MANIPULATIVE CAPABILITY.
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FIGURE 20. - 30-kW THERMAL ARCJET ENGINE DESIGNED BY GIANNINI SCIENTIFIC CORPORATION.
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FIGURE 31. - 100-kW SU6SCALE MAGNLIOPLASMAOYNAMIC 1I1RUSlLR.
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FIGURE 33. - NERVA 'FLIGHT ENGINE" CONFIGURATION.
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